Article ID Journal Published Year Pages File Type
4336628 Journal of Neuroscience Methods 2008 10 Pages PDF
Abstract
Fluctuations in motor output are typically quantified by the standard deviation (SD) of displacement or acceleration. The aim of the study was to determine the influence of a linear variable-displacement transducer (LVDT) on the SDs and spectral content of displacement and acceleration during steady isometric and anisometric contractions performed with the first dorsal interosseus muscle. Thirteen young adults supported six loads when performing position-holding and position-tracking tasks when the LVDT either was or was not attached to the index finger. The LVDT reduced the magnitude of the SDs in displacement and acceleration and disrupted the load-dependent modulation of the spectral properties of these signals. When the LVDT was not connected to the finger, the displacement SD was greatest during concentric contractions, the acceleration SD was greatest during eccentric contractions, and there were load-dependent changes in the power density spectra. Although the LVDT may be used for assessing relative changes in displacement, its ability to provide absolute measures of fluctuations in motor output is limited. The results provide baseline measures of the fluctuations in motor output during steady contractions with a hand muscle and how the method used to detect displacement alters these measures.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,