Article ID Journal Published Year Pages File Type
4337483 Neuroscience 2015 10 Pages PDF
Abstract

•Chronic ethanol produces persistent changes in the structure of mPFC neurons.•Protracted abstinence enhances dendritic arborization within apical dendrites.•Protracted abstinence produces hypermyelination in the mPFC.•Protracted abstinence produces hypophosphorylation of GR at Ser-232.

In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi–Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic–pituitary–adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,