Article ID Journal Published Year Pages File Type
4339734 Neuroscience 2009 12 Pages PDF
Abstract

The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. In the present study we have investigated the role of Tm-agrin in regulation of dendritic filopodia and synaptogenesis in maturing cultures of rat hippocampal neurons. We did this by infecting the neurons with an RNAi lentivirus to deplete endogenous agrin during the developmental period when filopodia density on the dendritic arbor was high, and synapse formation was rapid. We found that dendritic filopodia density was markedly reduced, as was synapse density along dendrites. Moreover, synapse formation was more sharply reduced on dendrites of infected neurons contacted by uninfected axons than on uninfected dendrites contacted by infected axons. The results are consistent with a physiological role for Tm-agrin in the maturation of hippocampal neurons involving positive regulation of dendritic filopodia and consequent promotion of synaptogenesis, but also suggest a role for axonal agrin in synaptogenesis.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,