Article ID Journal Published Year Pages File Type
4340817 Neuroscience 2009 23 Pages PDF
Abstract
In rats and primates, the central nucleus of the amygdala (CeN) is most known for its role in responses to fear stimuli. Recent evidence also shows that the CeN is required for directing attention and behaviors when the salience of competing stimuli is in flux. To examine how information flows through this key output region of the primate amygdala, we first placed small injections of retrograde tracers into the subdivisions of the central nucleus in Old world primates, and examined inputs from specific amygdaloid nuclei. The amygdalostriatal area and interstitial nucleus of the posterior limb of the anterior commissure (IPAC) were distinguished from the CeN using histochemical markers, and projections to these regions were also described. As expected, the basal nucleus and accessory basal nucleus are the main afferent connections of the central nucleus and transition zones. The medial subdivision of the central nucleus (CeM) receives a significantly stronger input from all regions compared to the lateral core subdivision (CeLcn). The corticoamygdaloid transition zone (a zone of confluence of the medial parvicellular basal nucleus, paralaminar nucleus, and the sulcal periamygdaloid cortex) provides the main input to the CeLcn. The IPAC and amygdalostriatal area can be divided in medial and lateral subregions, and receive input from the basal and accessory basal nucleus, with differential inputs according to subdivision. The piriform cortex and lateral nucleus, two important sensory interfaces, send projections to the transition zones. In sum, the CeM receives broad inputs from the entire amygdala, whereas the CeLcn receives more restricted inputs from the relatively undifferentiated corticoamygdaloid transition region. Like the CeN, the transition zones receive most of their input from the basal nucleus and accessory basal nucleus, however, inputs from the piriform cortex and lateral nucleus, and a lack of input from the parvicellular accessory basal nucleus, are distinguishing afferent features.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,