Article ID Journal Published Year Pages File Type
4341052 Neuroscience 2009 8 Pages PDF
Abstract

A role for guanosine 3′,5′-cyclic monophosphate (cGMP) and the protein kinase G (PKG) pathway in synaptic long-term depression (LTD) in the hippocampal CA1 region has been proposed, based on observations in vitro, where, for example, increases of [cGMP] result in short-term depression (STD) coupled with a reduction in presynaptic glutamate release. To date, no evidence exists to support that LTD in the intact, freely behaving animal involves these mechanisms. We examined the effect of increases of [cGMP] on basal transmission and electrically-induced STD at hippocampal CA1 synapses in vivo. We found that elevating [cGMP] dose-dependently caused a chemically-induced STD which occluded electrically-induced STD. Repeated administration of Zaprinast, an inhibitor of cGMP-degrading phosphodiesterase, resulted in persistent LTD (>24 h). Paired-pulse analysis supported a presynaptic mechanism of action. Application of an inhibitor of soluble guanylate cyclase prevented LTD induced by low-frequency stimulation (LFS), and impaired LFS-STD elicited in the presence of Zaprinast. These data suggest the involvement of cGMP in LTD in the CA1 region of freely behaving adult rats.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,