Article ID Journal Published Year Pages File Type
4341352 Neuroscience 2008 16 Pages PDF
Abstract
Studies in mammalian systems have shown an array of changes in transmitter signaling in diverse brain regions in response to stress, which differ depending on the age and genetic makeup of the animal, as well as the type of stress. Here, we exploit the genetic tractability of the fruit fly, Drosophila melanogaster, a comparatively simple but useful model in which to elucidate conserved components of stress response pathways. We show that structures within the mushroom bodies and central complex, two distinct anatomical regions within the Drosophila brain, modulate behavioral responses to two different environmental stressors. Modification of behavioral output after exposure to these stressors was dependent on the sex, sexual maturity, and reproductive status of the animal. These parameters also affected whether a mutant Drosophila strain carrying specific defects within the mushroom bodies and/or central complex modified its response to stress relative to wild-type flies. Our results suggest that for each population, unique subsets of neurons are recruited into the stress response circuitry and differentially affect locomotor behavior and cardiac function. These data also provide evidence for neural plasticity in the adult insect brain.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,