Article ID Journal Published Year Pages File Type
4341554 Neuroscience 2006 9 Pages PDF
Abstract

The midbrain is essential for prepulse inhibition (PPI) of the startle reflex, but the exact neural circuits for PPI are not yet determined. Electrical stimulation of the superior colliculus (SC) or pedunculopontine tegmentum was used to characterize the neurons and pathways that mediate PPI and the activation of startle that also occurs at higher currents in the same sites. Startle was inhibited by prepulses in most, but not all SC sites, with the lowest intensity sites in intermediate layers of SC. PPI latencies in SC sites were 4–6 ms longer than in inferior colliculus, intercollicular nucleus or pedunculopontine sites. Contrary to previous serial models, there must be two parallel midbrain pathways for PPI, a faster auditory pathway from inferior colliculus to pedunculopontine tegmentum, and a slower multimodal SC output for PPI. Double-pulse stimulation of SC sites shows that PPI results from direct stimulation of neurons with moderate refractory periods (0.4–1.0 ms), similar to SC neurons that mediate contraversive turning responses. By contrast, startle activation occurring at higher currents in all SC sites (even sites where PPI could not be elicited) results from stimulation of very short refractory period neurons (0.3–0.5 ms) and very long refractory period neurons (1.0–2.0 ms), with startle inhibition often found from 0.5–1.0 ms. Startle activation appears to result from stimulation of short refractory period neurons in deep SC layers that mediate fear-potentiated startle, plus long refractory period substrates in more dorsal SC sites.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,