Article ID Journal Published Year Pages File Type
4341794 Neuroscience 2008 11 Pages PDF
Abstract
The activation of glial cells in the CNS has been suggested to be involved in abnormal pain sensation after peripheral nerve injury. Previous studies demonstrated phosphorylation of p38 mitogen-activated protein kinase (MAPK) in spinal cord glial cells after peripheral nerve injury, and such phosphorylation has been suggested to be involved in the development of neuropathic pain. The aim of this study was to examine the dorsal column nuclei for phosphorylation of p38 MAPK following peripheral nerve injury and to explore a possibility of its contribution to neuropathic pain. Immunohistochemical labeling for phosphorylated p38 (p-p38) MAPK was performed in histological sections of the rat spinal cord and medulla oblongata after the fifth lumbar (L5) spinal nerve ligation (SNL). The number of p-p38 MAPK-immunoreactive (IR) cells was significantly increased in the L5 dorsal horn and the gracile nucleus ipsilateral to the injury at days 3-21 after SNL. Double immunofluorescence labeling with cell-specific markers revealed that p-p38 MAPK-IR cells co-expressed OX-42, suggesting their microglial identity. Increased immunofluorescence labeling for OX-42 indicated that microglial cells were activated by SNL in the L5 dorsal horn and the gracile nucleus ipsilateral to the injury. Continuous infusion of a p38 MAPK inhibitor into the cisterna magna for 14 days beginning on the day of SNL suppressed the development of tactile allodynia, but not thermal hyperalgesia induced by nerve injury. These results demonstrate that SNL activates p38 MAPK pathway in microglia in the gracile nucleus as well as in the spinal cord dorsal horn. Activation of p38 MAPK in medullary microglia may contribute to the pathogenesis of neuropathic pain.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,