Article ID Journal Published Year Pages File Type
4341816 Neuroscience 2006 10 Pages PDF
Abstract

We investigated the molecular mechanisms of the anti-apoptotic properties of granulocyte-colony stimulating factor (G-CSF) on neurons and whether G-CSF affects glial cell survival following focal cerebral ischemia in rats. Sprague–Dawley rats were subjected to a transient 90 min middle cerebral artery occlusion (MCAO) by the intraluminal occlusion technique. Rats were treated with either a single dose of G-CSF (50 μg/kg, s.c.) at the onset of reperfusion or G-CSF (50 μg/kg body weight, s.c.) was administered starting at the onset of reperfusion and followed by the administration of the same dose per day for an additional 2 days. Brains were harvested either 24 h, 72 h or 2 weeks after reperfusion for assays of infarct volume, immunohistological studies and Western blot analysis for phosphorylated signal transducer and activator of transcription 3 (pSTAT3), Pim-1, bcl-2, Bax, cytochrome c, cellular inhibitor of apoptosis protein 2 (cIAP2), and cleaved caspase-3 levels. G-CSF significantly reduced infarct volume and ameliorated the early neurological outcome. G-CSF treatment significantly up-regulated pSTAT3, Pim-1, bcl-2 expression, and down-regulated cytochrome c release to the cytosol, Bax translocation to the mitochondria, and cleaved caspase-3 levels in neurons. The activation of the STAT3 pathway was accompanied by increased cIAP2 expression in glial cells. After MCAO, G-CSF treatment increased both neuronal and glial survival by effecting different anti-apoptotic pathways which reflects the multifactorial actions of this drug. These changes were associated with remarkable improvement in tissue preservation and behavioral outcome.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,