Article ID Journal Published Year Pages File Type
4342785 Neuroscience 2006 8 Pages PDF
Abstract

Delta opioid receptor agonists produce only a moderate degree of antinociception, possibly reflecting the predominantly intracellular location of delta opioid receptor. However, recent studies suggest that short term morphine pretreatment can increase delta opioid receptor-mediated antinociception by promoting the translocation of delta opioid receptor to the cell surface. Even more striking sensitization has been reported after long term morphine pretreatment and withdrawal in locomotor tests. In the present study we therefore examined the effects of longer term morphine pretreatment and withdrawal on delta opioid receptor-mediated antinociception in the formalin test. Male adult rats were pretreated daily with morphine (10 mg/kg s.c.) or saline for 10 days, and were tested acutely with the delta opioid receptor agonist [d-Ala2,Glu4]-deltorphin (intrathecal) at 0, 7 and 14 days of withdrawal. Unexpectedly, chronic morphine pre-exposure resulted in tolerance to [d-Ala2,Glu4]-deltorphin-induced antinociception, and this occurred at 0 and 7 but not 14 days of morphine withdrawal. Morphine challenge at withdrawal day 7 confirmed the presence of tolerance to the antinociceptive effects of this drug. Chronic morphine pretreatment also resulted in tolerance to the locomotor stimulant effect of [d-Ala2,Glu4]-deltorphin (given i.c.v.), contrary to a previous report of sensitization. However, consistent with previous reports, short term (2 day) pretreatment with morphine did result in sensitization to [d-Ala2,Glu4]-deltorphin. Subsequent in vitro analysis, using [125I][d-Ala2,Glu4]-deltorphin or guanosine 5′(γ-35S-thio) triphosphate autoradiography, did not reveal any changes in delta opioid receptor binding or function resulting from chronic morphine pretreatment. In conclusion, chronic morphine pretreatment caused tolerance to delta opioid receptor-mediated behavioral effects with no clear change at the receptor level.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,