Article ID Journal Published Year Pages File Type
4345309 Neuroscience Letters 2011 5 Pages PDF
Abstract

Chondroitin sulfate/dermatan sulfate (CS/DS) polysaccharides have been reported to play a crucial role in the proliferation and maintenance of neural stem cells (NSCs). However, little is known about the structural changes and functional role of CS/DS chains in the differentiation of NSCs. Western blots of NSCs, neurons and astrocytes in culture, with three CS-polysaccharide antibodies of different specificities, revealed marked differences in CS structure among the three cell types. To confirm this finding, we measured gene expression levels of CS sulfotransferases and C5-epimerase in these cell types, as these are responsible for producing the high structural diversity of CS/DS. Expressions of chondroitin 4-O-sulfotransferase, chondroitin 6-O-sulfotransferase, and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase mRNAs were low in cultures of differentiated neural cells, such as neurons and astrocytes, in comparison to NSCs. In contrast, expressions of uronyl 2-O-sulfotransferase and C5-epimerase mRNAs were higher in the differentiated neural cells than NSCs. Thus, we first provide evidence to support the hypothesis that CS/DS undergoes structural changes during NSC differentiation. The structural changes in CS/DS may be implicated in the regulation of NSC differentiation through interactions with growth/neurotrophic factors and cytokines.

Research highlights► CS polysaccharide immunoreactivity changes during NSC differentiation. ► Gene expression levels of multiple CS-modification enzymes change during NSC differentiation. ► CS polysaccharide undergoes structural changes during NSC differentiation. ► Structural changes in CS polysaccharide may be implicated in the regulation of NSC differentiation.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,