Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4346052 | Neuroscience Letters | 2010 | 5 Pages |
Abstract
Oxidative stress and secondary excitotoxicity, due to cellular energy deficit, are major factors playing roles in 3-nitropropionic acid (3-NPA) induced mitochondrial dysfunction. Acute or chronic exposure to 3-NPA also leads to neuronal degeneration in different brain regions. The present study quantitatively assessed peripheral neuropathy induced by chronic exposure to 3-NPA in rats. The neuroprotective abilities of two antioxidants, acetyl-l-carnitine and resveratrol, were investigated as well. Rats were exposed for up to four weeks to 3-NPA alone or 3-NPA combined with acetyl-l-carnitine or resveratrol, administered peripherally. The experimental outcome was evaluated by neurophysiological, histological, and morphometric analyses. Rats exposed to 3-NPA developed hind limb paresis. Furthermore, a significant decrease in motor nerve conduction velocity (MCV) was detected in tail nerves and axonal degeneration in sciatic nerves (p < 0.05). Treatment with resveratrol prevented the functional effects of 3-NPA exposure, whereas treatment with acetyl-l-carnitine, preventing paresis, was not effective to MCV and morphological changes. These data suggest that resveratrol is a good candidate for treatment of metabolic neuropathy. The experimental outcome of this study shows that chronic treatment with 3-NPA in rats is relevant in development of an experimental model of toxic neuropathy.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Zbigniew K. Binienda, Micheal A. Beaudoin, Bobby Gough, Syed F. Ali, Ashraf Virmani,