Article ID Journal Published Year Pages File Type
4346466 Neuroscience Letters 2010 4 Pages PDF
Abstract

Nicotine modulates dopaminergic activity in the central nervous system by acting on the reuptake system, including the dopamine transporter (DAT), although precisely remains unclear. Here we investigated the effect of nicotine on the transcriptional regulation of the human DAT (hDAT) gene by conducting luciferase reporter assays. Nicotine enhanced the transcription of hDAT gene constructs in transiently transfected SK-N-SH cells. Hexamethonium, a neuronal (ganglionic) nicotinic acetylcholine receptor antagonist, blocked the action of nicotine. Functional analyses placed the nicotine-responsive region −3.5 to −1.0 kb (from the transcription start site) upstream of the core promotor region. Deletion of intron 1, known as a silencer element of the hDAT gene, abolished nicotine's stimulatory effect. Nicotine failed to stimulate DAT promotor activity in non-neuronal CHO or COS-7 cells or in SK-N-AS cells, another neuronal cell line recently reported as a model for investigating DAT gene expression. These results suggest a nicotinic cholinergic mechanism to be involved in the nicotine-induced up-regulation of DAT gene expression.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,