Article ID Journal Published Year Pages File Type
4346501 Neuroscience Letters 2010 6 Pages PDF
Abstract

Control of stem cell state and differentiation of neural stem/progenitor cells is essential for proper development of the nervous system. EGF and FGF2 play important roles in the control of neural stem/progenitor cells, but the underlying mechanism still remains unclear. Here we show, using in vitro primary cultures of mouse neural stem/progenitor cells, that both PI3K and mTOR are activated by EGF/FGF2 but that inhibiting the activation of either PI3K or mTOR alone results in only reduced proliferation of neural stem/progenitor cells without affecting their stem cell state, namely, the capacity to self-renew. However, significantly, concurrent inhibition of PI3K and mTOR promoted exit from the stem cell state together with astrocytic differentiation of neural stem/progenitor cells. These findings suggest that PI3K and mTOR are involved in the EGF/FGF2-mediated maintenance of neural stem/progenitor cells and that they may act in parallel and independent pathways, complementing and backing up each other to maintain the stem cell state.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , , ,