Article ID Journal Published Year Pages File Type
4348623 Neuroscience Letters 2008 4 Pages PDF
Abstract

Neuropeptide Y (NPY) is found in neurons of the brain and in the neurons that innervate abdominal organs including liver. Major biological function of hypothalamic NPY is regulation of appetite and body weight homeostasis. In the periphery, biological function of NPY varies, depending on the organ/tissue. Increased hypothalamic NPY mRNA level in response to chronic caloric restriction is a well documented phenomenon. The effect of food restriction on NPY mRNA level in neurons that innervate liver has not been published so far. To evaluate how chronic food restriction affects liver (and other abdominal organs) NPY mRNA level, we compared NPY mRNA abundance in liver, kidney cortex, perirenal white adipose tissue and in hypothalamus of rats maintained on chronic restricted diet. Data presented in this paper indicate that chronic food restriction: (a) caused the increase of NPY mRNA level in the hypothalamus, (b) caused the decrease of NPY mRNA level in the liver, and (c) was without effect on NPY mRNA level in kidney cortex and perirenal white adipose tissues. Moreover, rats maintained on restricted diet displayed lower serum NPY, leptin and insulin concentrations and higher serum corticosterone concentration. Together, these data suggest that hypothalamus and liver (and other abdominal organs) NPY gene expression is differentially regulated by caloric restriction. It seems that liver NPY gene expression in contrast to the hypothalamus NPY gene expression is not suppressed by leptin.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,