Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4349980 | Neuroscience Letters | 2006 | 6 Pages |
We investigated the role of two intracellular second messengers, extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC), in a model of persistent pain using intrathecal (i.t.) (R,S)-3,5-dihydroxyphenylglycine (DHPG). Spontaneous nociceptive behaviours (SNBs), mechanical allodynia (von Frey thresholds) and heat hyperalgesia (plantar test latencies) induced by DHPG were measured in animals pretreated i.t. with membrane permeable inhibitors of ERK (PD 98059) and PKC (GF 109203X). Spinal administration of PD 98059 dose-dependently reduced SNBs, and attenuated both mechanical allodynia and heat hyperalgesia induced by DHPG. GF 109203X treatment also reduced SNBs and heat hyperalgesia, but did not affect mechanical allodynia induced by DHPG. Neither PD 98059, nor GF 109203X, altered mechanical or thermal thresholds in saline-injected control rats. These results suggest that both ERK and PKC are involved in persistent pain associated with the i.t. administration of DHPG.