Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4350585 | Neuroscience Letters | 2006 | 6 Pages |
Abstract
Gene targeting approaches greatly facilitate insight into the functioning of monoamine transporters, the targets of potent antidepressants. The serotonin transporter (5-HTT) is the molecular target of a large number of antidepressants. To assess the clearance of serotonin (5-HT) in the absence of the 5-HTT, we have generated double knockout mice lacking both the 5-HTT and the catabolizing enzyme monoamine oxidase A (MAOA). We found aberrant 5-HT accumulation in the striatum of these MAOA/5-HTT double knockout mice. By additional ablation of the dopamine transporter (DAT), this aberrant 5-HT accumulation was abolished in MAOA/5-HTT/DAT triple knockout mice. Thus, aberrant uptake of 5-HT occurs in dopaminergic terminals under conditions of elevated 5-HT levels, and this aberrant uptake is mediated by the DAT. These findings have important consequences for antidepressant therapy, since during treatment of depression with selective serotonin reuptake inhibitors, clearance of 5-HT by dopaminergic neurons may reduce the desired therapeutic elevation of extracellular 5-HT levels. This provides a molecular rationale for improving antidepressant efficacy by additional pharmacological inhibition of the DAT.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Rainald Mössner, Rabi Simantov, Alexander Marx, Klaus Peter Lesch, Isabelle Seif,