Article ID Journal Published Year Pages File Type
4350713 Neuroscience Letters 2006 6 Pages PDF
Abstract

We have previously found that the dendritic trees of dentate gyrus granule cells are selectively vulnerable to food restriction but there are reorganizational morphological events that minimize functional impairments. As the neurotrophin brain-derived neurotrophic factor (BDNF) and the cognate receptor tyrosine kinase B (TrkB) are involved in the maintenance of the structure of dendritic trees, we thought of interest to verify if there are alterations in its synthesis and expression in granule cells. To investigate this issue, 2-month-old rats were submitted to 40% caloric restriction for 6 months and compared to controls fed ad libitum. The numbers of granule cells containing BDNF and TrkB proteins were estimated from immunostained sections and the respective mRNA levels of individual neurons evaluated using nonradioactive in situ hybridization. After dietary treatment there was a 15% reduction of BDNF-immunoreactive granule cells with no changes of the number of TrkB-immunostained neurons. No alterations were found in the levels of BDNF and TrkB mRNAs of individual granule cells. As caloric restriction extends the lifespan of animals, the restrictive dietary regimens are generally regarded as beneficial to the organisms, but the present results suggest that caution is needed when extrapolating to some neuronal populations.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,