Article ID Journal Published Year Pages File Type
4353365 Progress in Neurobiology 2013 22 Pages PDF
Abstract

•Autophagic degradation is impaired in the neurons of AD brain.•Impaired autophagy affects mitochondrial clearance and APP processing.•Beclin 1/Vps34 complex is the major inducer of autophagy.•Beclin 1 function is disturbed in AD brains and transgenic AD mice.•Mechanisms impairing the function of Beclin 1 interactome in AD will be discussed.

The accumulation of amyloid-β-containing neuritic plaques and intracellular tau protein tangles are key histopathological hallmarks of Alzheimer's disease (AD). This type of pathology clearly indicates that the mechanisms of neuronal housekeeping and protein quality control are compromised in AD. There is mounting evidence that the autophagosome-lysosomal degradation is impaired, which could disturb the processing of APP and provoke AD pathology. Beclin 1 is a molecular platform assembling an interactome with stimulating and suppressive components which regulate the initiation of the autophagosome formation. Recent studies have indicated that the expression Beclin 1 is reduced in AD brain. Moreover, the deficiency of Beclin 1 in cultured neurons and transgenic mice provokes the deposition of amyloid-β peptides whereas its overexpression reduces the accumulation of amyloid-β. There are several potential mechanisms, which could inhibit the function of Beclin 1 interactome and thus impair autophagy and promote AD pathology. The mechanisms include (i) reduction of Beclin 1 expression or its increased proteolytic cleavage by caspases, (ii) sequestration of Beclin 1 to non-functional locations, such as tau tangles, (iii) formation of inhibitory complexes between Beclin 1 and antiapoptotic Bcl-2 proteins or inflammasomes, (iv) interaction of Beclin 1 with inhibitory neurovirulent proteins, e.g. herpex simplex ICP34.5, or (v) inhibition of the Beclin 1/Vps34 complex through the activation of CDK1 and CDK5. We will shortly introduce the function of Beclin 1 interactome in autophagy and phagocytosis, review the recent evidence indicating that Beclin 1 regulates autophagy and APP processing in AD, and finally examine the potential mechanisms through which Beclin 1 dysfunction could be involved in the pathogenesis of AD.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , ,