Article ID Journal Published Year Pages File Type
4354609 Trends in Neurosciences 2011 8 Pages PDF
Abstract

Axons have evolved to acquire myelination, enabling denser packing and speedier transmission. Although myelin is considered a passive insulator, recent reports suggest a more dynamic role. Axons, in turn, are endowed with neurotransmitter release and uptake systems along their trunks. Based on these observations, I argue that there may exist a new type of chemical synapse between axon and myelin, one that supports activity-dependent communication between the two. This raises intriguing possibilities of dynamic fine-tuning of the myelin sheath even in adulthood, efficient recruitment of resources for myelin maintenance and bi-directional signaling, whereby the axon informs its myelinating cell of its metabolic needs proportionally to the electrical traffic it is transmitting. This would also have implications for de- and dysmyelinating diseases should this axo-myelinic synapse become dysfunctional.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
,