Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4356105 | Hearing Research | 2008 | 9 Pages |
Abstract
The overall purpose of this study is to examine the behavior of primary auditory cortex (AI) units in the three-dimensional stimulus space that resembles normal listening conditions, viz., level at the two ears and frequency. A binaural-level response area (LRA) is the response to a matrix of contralateral and ipsilateral stimuli presented at a single frequency. LRAs have been examined in the inferior colliculus and AI and found to be highly organized response patterns that are shaped by binaural interactions. The aggregate of LRAs across frequency is the binaural response structure (BRS), a new concept that captures unit behavior in this three-dimensional stimulus space. Since binaural interactions contribute greatly to configuring component LRAs, it is clear that binaural interactions help shape the aggregate BRS. The BRS contains the data required to generate binaural frequency response functions. The frequency range and magnitude of these functions depend on the level of the stimulus at each ear and the configuration of the BRS. Changing either level can greatly alter the binaural frequency response function. Thus, in addition to their classic role in localization, binaural interactions play a fundamentally important role in determining the frequency domain of units in AI.
Related Topics
Life Sciences
Neuroscience
Sensory Systems
Authors
Leonard Kitzes,