Article ID Journal Published Year Pages File Type
4356176 Hearing Research 2007 11 Pages PDF
Abstract
Conductive hearing impairment results in marked changes in neuronal activity in the central auditory system, particularly in young animals [Tucci, D.L., Cant, N.B., Durham, D., 1999. Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope 109, 1359-1371]. To better understand the effects of conductive hearing loss (CHL) on cellular metabolism, incorporation of 3H-leucine was used as a measure of protein synthesis in immature postnatal day 21 gerbils subjected to either unilateral CHL by malleus removal or profound sensorineural hearing loss by cochlear ablation. 3H-leucine uptake was measured after survival times of 6 or 48 h. Protein synthesis values were standardized to measurements from the abducens nucleus and compared with measurements from sham animals at similar age/survival times. Protein synthesis in the medial superior olive (MSO) was found to be significantly down-regulated (bilaterally) after CHL in animals surviving 48 h. However, 6 h after CHL manipulation, protein synthesis is up-regulated in MSO (bilaterally) and in the ipsilateral medial nucleus of the trapezoid body.
Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , ,