Article ID Journal Published Year Pages File Type
4358353 Research in Microbiology 2016 9 Pages PDF
Abstract

A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP+ ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD+ ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , ,