Article ID Journal Published Year Pages File Type
4359598 Research in Microbiology 2007 8 Pages PDF
Abstract

Actinobacteria are believed to play a major role in organic matter degradation and humification processes in composts. In this study, the effects of different temperature regimes on the succession of Actinobacteria populations during composting were investigated in a laboratory reactor. Phospholipid fatty acid (PLFA) was used to investigate quantitative changes in the overall microbial biomass and community structure, and in the size of Actinobacteria populations. Qualitative changes were determined using PCR-DGGE (denaturing gradient gel electrophoresis) and sequencing of 16S rRNA genes with Actinobacteria-specific primers. The peak in total microbial biomass was roughly twice as high and delayed in trials where the maximum temperature was 40 °C, compared to those where it was 55 or 67 °C. There was a shift from members of Corynebacterium, Rhodococcus and Streptomyces at the onset to species of thermotolerant Actinobacteria in the cooling phase, e.g. Saccharomonospora viridis, Thermobifida fusca and Thermobispora bispora. In conclusion, temperature was an important selective factor for the development of Actinobacteria populations in composts, and they constituted a substantial part of the community in the later compost stages.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , ,