Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4366007 | International Biodeterioration & Biodegradation | 2007 | 7 Pages |
This study shows how the carbon and nitrogen (C/N) ratio controls the simultaneous occurrence of nitrification and denitrification in a sequencing batch reactor (SBR). Data demonstrated that a low C/N ratio resulted in a rapid carbon deficit, causing an unbalanced simultaneous nitrification–denitrification (SND) process in SBR. When the initial COD/NH4+-N ratio was adjusted to 11.1, the SND-based SBR achieved complete removal of NH4-N and COD without leaving any NO2−-N in the effluent. The nitrogen removal efficiency decreases gradually with increasing ammonium-loading rate to the SND–SBR system. Altogether, data showed that appropriate controls of carbon and nitrogen input are required to achieve an efficient SND–SBR. An established SND technology can save operation time and energy, and might replace the traditional two-stage biological nitrification and denitrification process.