Article ID Journal Published Year Pages File Type
4371054 Experimental Parasitology 2014 7 Pages PDF
Abstract

•L19 levels are higher in log than in stationary phase promastigotes in all species tested.•L. major L19 protein is undetectable in amastigotes despite high transcript levels.•L19-overexpressor promastigotes show impaired growth in axenic culture.•L19-overexpressor accrues polysome peaks contrasting with low translation activity.•L19 overexpression may induce translation arrest by blocking elongation/termination.

Leishmania is a genus of protozoan parasites causing a wide clinical spectrum of diseases in humans. Analysis of a region of chromosome 6 from Leishmania major (Iribar et al.) showed that the transcript of a putative L19 ribosomal protein (RPL19) was most abundant at the amastigote stage. We therefore decided to characterize L19 protein abundance throughout the lifecycle of Leishmania. Differential expression of the L19 gene during development has been observed for all Leishmania species studied to date (L. major, L. braziliensis, L. donovani, and L. amazonensis). Immunoblotting with polyclonal antibodies against L. major RPL19 revealed that changes to L19 protein abundance follow a similar pattern in various species. The amount of L19 protein was higher in exponentially growing promastigotes than in stationary phase promastigotes. The L19 protein was barely detectable in amastigotes, despite the abundance of L19 transcripts observed in L. major at this stage. Immunofluorescence assays showed a granular, dispersed distribution of RPL19 throughout the cytoplasm. Subcellular fractionation confirmed the presence of the protein in the ribosomal fraction, but not in the cytosol of L. major. We generated a L. major transfectant bearing a plasmid-borne L19 gene. Overproduction of the L19 transcript and protein resulted in impaired growth of the transfectants in association with high polysome peaks. We also showed by metabolic labeling that L19 overexpressing clones display low rates of translation. These data suggest that L19 overexpression affects negatively translation elongation or termination. The lack of correlation between L19 transcript and protein abundances suggest that the translation of L19 is differentially controlled during development in the various species investigated.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Immunology and Microbiology Parasitology
Authors
, , , , , ,