Article ID Journal Published Year Pages File Type
43749 Applied Catalysis A: General 2008 7 Pages PDF
Abstract

Ir-based catalysts on heat-resisting foil supports with different washcoats were investigated for hydrogen production by high-temperature steam reforming of methanol. Al2O3, Ce0.8Zr0.2O2–Al2O3, Ce0.8Zr0.2O2/Al2O3 and Ce0.8Zr0.2O2 coatings were prepared on the metallic supports and iridium was deposited on them as the active component. The samples were characterized by X-ray powder diffraction (XRD), ultrasonic vibration test, scanning electron microscope (SEM) and temperature-programmed reduction (TPR). The performance of the catalysts for steam reforming of methanol was evaluated with a fixed-bed reactor. It was found that the phase structure, the shape of the surface particles and the coating adherence were different from each other for the four kinds of coatings. The activities, selectivities and stabilities of these Ir-based catalysts on metallic supports were compared to select the optimal one for use in high-temperature methanol steam reforming. The results indicated that the Ir/Ce0.8Zr0.2O2/Al2O3/FeCrAl catalyst showed better performance than the other catalysts, which is a promising candidate for hydrogen production via the methanol steam reforming process in Pd membrane reactors.

Graphical abstractAl2O3, Ce0.8Zr0.2O2–Al2O3, Ce0.8Zr0.2O2/Al2O3 and Ce0.8Zr0.2O2 coatings were prepared on the FeCrAl metallic supports and iridium was deposited on them as the active component. The samples were characterized by X-ray powder diffraction (XRD), ultrasonic vibration test, scanning electron microscope (SEM) and temperature-programmed reduction (TPR). The activities, selectivities and stabilities of these Ir-based catalysts on metallic supports were compared to select the optimal one for use in high-temperature methanol steam reforming. Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,