Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4398508 | Journal of Great Lakes Research | 2013 | 10 Pages |
Abstract
The pelagic regions of Lake Superior and eastern Lake Erie (Laurentian Great Lakes) are typically phosphorus (P)-limited environments, and picocyanobacteria of the genus Synechococcus spp. are prominent primary producers during the summer. As a proxy for their utilization of organic P, the expression of two genes, phnD and phoX, was monitored. The phnD gene encodes the phosphonate binding protein of the ABC-type phosphonate transporter, whereas the phoX gene encodes a calcium-dependent alkaline phosphatase. Furthermore, to assess the ability of freshwater Synechococcus spp. to substitute sulfolipids for phospholipids, sqdX gene (cyanobacterial sulfolipid synthase) expression was examined. We employed PCR primers to detect the presence of all three genes in the endemic Synechococcus spp., and RT-PCR assays of cultured freshwater strains and environmental samples to assess the degree of P-stress in the phytoplankton. We show that the phnD gene was constitutively expressed, suggesting that freshwater picocyanobacteria were metabolizing exogenous phosphonate compounds in Lakes Erie and Superior. By contrast, phoX was regulated by P bioavailability. We also provide evidence that sqdX is expressed during increased growth rates in phosphorus-replete conditions, suggesting that sulfolipid synthesis is not a P conservation mechanism for freshwater Synechococcus spp.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Olga A. Kutovaya, Robert Michael L. McKay, George S. Bullerjahn,