Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4398619 | Journal of Great Lakes Research | 2013 | 10 Pages |
Abstract
Populations of native unionids have been in steady decline over the past century. The invasion of dreissenid mussels (Dreissena polymorpha and Dreissena rostriformis bugensis) in the mid-1980's impacted already imperiled unionid populations by greatly increasing their regional extinction rates. A selection of Great Lakes coastal wetlands around Michigan was surveyed to locate remnant populations of native unionids. Physical and chemical parameters were measured in coastal wetlands to evaluate the importance of these habitat parameters to remnant unionid assemblages. We assessed fouling rates by dreissenids on unionids and used artificial substrates to estimate dreissenid colonization densities. Live unionids were found in coastal wetlands of the Les Cheneaux Islands, the Lake St. Clair delta, and North Maumee Bay with significantly higher unionid fouling in the Les Cheneaux Islands compared to the other two sampling areas (F2,76 = 4.97, p = 0.0095). No live unionids were documented in Beaver Island, Garden Island, Grand Traverse Bay, or Saginaw Bay wetlands. Dreissena colonization densities on artificial substrates averaged 19,213 mâ 2 at one site in North Maumee Bay, and 10,425 mâ 2 in Saginaw Bay, but no colonization occurred in the wetlands of Beaver Island, Garden Island, the Les Cheneaux Islands, or Grand Traverse Bay while Dreissena presence in the open water of these regions was evident. Dreissena colonization densities on artificial substrates increased with measures of anthropogenic disturbance and decreased with higher water level fluctuations and aerial exposure. Specific conductance, turbidity, and magnitude of water level fluctuations were important predictors of Dreissena colonization on artificial substrates.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Jessica J. Sherman, Brent A. Murry, Daelyn A. Woolnough, David T. Zanatta, Donald G. Uzarski,