Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4399363 | Journal of Great Lakes Research | 2009 | 9 Pages |
Abstract
The multi-scale nature of streams, rivers, and inland lakes is well documented, although relationships between the ecology of Great Lakes nearshore areas and shoreline processes are generally poorly described. Given the high levels of development pressure currently exerted on Great Lakes shorelines, we sought to determine whether patterns exist between measures of shoreline development quantified at multiple spatial scales and adjacent fish community measures. We expected that fish measures for nearshore areas immediately adjacent to intact versus modified shorelines would differ as a result of the greater buffering capacity of the intact shorelines. Further, we expected anthropogenic shoreline factors to act cumulatively in combination with prevailing currents to influence fish communities in downdrift nearshore areas. Our results indicated that a few shallow water and nearshore fish community measures exhibited significant patterns that may be attributable to immediately adjacent shoreline characteristics. In addition, several fish measures were related to urban-residential land uses and shore structure numbers of updrift shoreline areas, suggesting that cumulative anthropogenic factors operating over larger spatial scales also influence local fish communities. Based on these results, we argue that there is critical need for multi-scale management strategies for shorelines that address the potential for both local and cumulative, larger-scale environmental impacts relative to local nearshore biota.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Reuben R. Goforth, Stephanie M. Carman,