Article ID Journal Published Year Pages File Type
4403678 Procedia Environmental Sciences 2011 7 Pages PDF
Abstract

Taking Tamarix hispida as test materials, a group of different concentrations of NaCl were then added to the pots and the salinity was maintained at 3.0(CK), 5.0, 10.0, 15.0 and 20.0 g/L. Na+ content and K+ content of different samples were analyzed by ICP-AES. This paper has studied the influence of salt stress on the content and the distribution of Na+ and K+ in Tamarix hispida and discussed the ion transport and selective absorption mechanism of plants under the salt stress. The result shows that Na+ content of Tamarix hispida were increasing prominently with increased salinity and K+ content was rising at first and then decreasing. In the same level of salt concentration, the order of Na+ content and K+ content in Tamarix hispida is leaf>root>stem, leaf is the main part of Na+ accumulation and K+ accumulation. And the stem is just a transmission channel for Na+ where does not exist the cumulative process. In different growth areas, Na+ content is always greater than K+ content. That is because Tamarix hispida is a salt secretion plant. It has expelled the excess salt in leaves outside the body through the salt glands, which will relieve the damage of Na+ on roots to a certain extent. K+/ Na+ in leaves are greater than the one in roots, which explains the salt resistance of leaf is greater than the root.

Related Topics
Life Sciences Environmental Science Ecology