Article ID Journal Published Year Pages File Type
4406952 Chemie der Erde - Geochemistry 2014 10 Pages PDF
Abstract
This study presents isotope geochemical analyses conducted on water column samples and core sediments collected from the Swan Lake Basin. Water analyses include the dissolved methane (CH4) content and the ratio of carbon-13 to carbon-12 (δ13C) in dissolved inorganic carbon (DIC). The core sediments - sandy muds containing inorganic calcite, organic matter, and opal phases ± ostracods - were examined by X-ray diffraction, dated by radiocarbon (14C), analyzed for wt% organic carbon, wt% organic nitrogen, wt% organic matter, wt% calcite, δ13C of bulk-sediment insoluble organic matter (kerogen), 18O:16O ratio (δ18O) and δ13C of bulk and ostracod calcite. Of particular significance is the large enrichment in carbon-13 (δ13C = +4.5 to +20.4‰ V-PDB) in the calcite of these sediments. The 13C-enriched calcite is primarily formed from DIC in the water column of the lake as a result of the following combined processes: (i) the incorporation of 13C enriched residual carbon dioxide (CO2) after partial reduction to CH4 in the sediments and its migration into the water column-DIC pool; (ii) the preferential assimilation of 12C by phytoplankton during photosynthesis; (iii) the removal of 13C-depleted CH4 by ebullition and of organic matter by sedimentation and burial. The 13C enrichment was low between 3624 and 2470 yr BP; high between 2470 and 1299 yr BP; and moderate since 1299 yr BP. Low 13C enrichment was formed under low water-column carbon levels while higher ones were formed under elevated rates of biomass and calcite deposition. These associations seem to imply that biological productivity is the main reason for carbon-13 enrichments.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,