Article ID Journal Published Year Pages File Type
4407062 Chemie der Erde - Geochemistry 2010 10 Pages PDF
Abstract

Gersdorffite from two mineralization types (post-Variscan vein deposits, strata-bound mineralization) was investigated in the Niederberg area Rhenish Massif. In the ternary Ni–Co–Fe space gersdorffite from post-Variscan vein deposits displays a tight cluster with the highest Ni-contents ranging from 0.825 to 0.962 atoms per formula unit (a.p.f.u.). As/S ratios comprise a narrow range from 0.875 to 1.012. In contrast gersdorffite from the strata-bound mineralization displays a substitutional trend. Co and Fe substitute for Ni in a ± fixed ratio. Ni ranges between 0.494 and 0.836 a.p.f.u. As/S ratios (1.025–1.211) display a wider range and indicate higher As-contents relative to gersdorffite from post-Variscan vein deposits. Based on these results, two different hydrothermal fluid systems can be identified in the Niederberg area forming gersdorffite in both mineralization types. The hydrothermal fluids circulating in the post-Variscan vein deposits were homogeneous (high Ni-activities, lower As fugacities) and mixing occurred far away from the site of deposition whereas the fluids of the strata-bound mineralization were more heterogeneous (decreasing Ni-activities) with moderate elevated As fugacities. With respect to the post-Variscan vein deposits in the Niederberg area the results are compatible with earlier findings.Comparison with available gersdorffite analyses from adjacent areas (borehole Viersen, Ramsbeck deposit) reveal that gersdorffite compositions provide a reliable tool in distinguishing between different hydrothermal systems on a regional scale in the northern Rhenish Massif. However, gersdorffite compositions cannot be used to discriminate between Variscan and post-Variscan deposits with confidence.The country rocks in the Niederberg area are possible sources for Ni, Co and Fe during gersdorffite formation of the strata-bound mineralization. However, due to the remarkable homogeneity of gersdorffite compositions of the post-Variscan vein deposits irrespective of age and composition of the immediate adjacent host-rocks it is assumed that these host-rocks are not the source of the metals. Reduced Zechstein sulfate is assumed to be the source of sulfur. The As source remains unknown.Due to conflicting experimental data concerning the gersdorffite solid solution field it is not possible to derive reliable formation temperatures for the strata-bound mineralization. However, gersdorffite compositions of the post-Variscan vein deposits are compatible with low formation temperatures (<300 °C) in accordance with earlier findings.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,