Article ID Journal Published Year Pages File Type
4407069 Chemie der Erde - Geochemistry 2010 10 Pages PDF
Abstract

Wadi El-Markh gabbro–diorite complex is composed of pyroxene hornblende gabbros, hornblende gabbros, diorites and quartz diorites. According to their bulk rock geochemistry and mineral chemistry, the gabbroic and dioritic rocks represent fractionates along a single line of descent and crystallized from a calc-alkaline mafic magma. When compared to the primitive mantle, all members of the gabbroic–dioritic rock suite are enriched in the large ion lithophile elements relative to the high field strength elements and display distinctive negative Nb and P2O5 anomalies. This signals an arc setting. Fractionation modeling involving the major elements reveals that the hornblende gabbros were generated from the parent pyroxene hornblende gabbros by 61.86% fractional crystallization. The diorites were produced from the hornblende gabbros by fractional crystallization with a 58.97% residual liquid, whereas the quartz diorites were formed from the diorites by 26.58% fractional crystallization. According to geothermobarometry based on amphibole mineral chemistry, the most primitive pyroxene hornblende gabbros crystallized at ∼830 °C/∼5 kbar. The crystallization conditions of the quartz diorites were estimated at ∼570 °C/∼2 kbar. In consequence the Wadi El-Markh gabbro–diorite complex represents a single magmatic suite of which fractionates crystallized in progressively shallower levels of an arc crust.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,