Article ID Journal Published Year Pages File Type
4408132 Chemosphere 2015 8 Pages PDF
Abstract

•PFOA/PFOS pre-exposure altered herbicide toxicity towards a target organism.•PFOA showed the strongest modifying effect.•PFOA pre-exposure markedly increased the toxicity of 2,4-D and Paraquat.•In the case of Atrazine, pre-exposure to any of the PFCs decreased toxicity.•Both PFCs at the pre-exposure concentrations altered membrane properties.

Pre-exposure to the perfluorinated compounds (PFCs) perfluorooctano sulphonate (PFOS) or perfluorooctanoic acid (PFOA) on the toxicity of four herbicides of different types and modes of action towards the self-luminescent recombinant cyanobacterium Anabaena CPB4337 was evaluated. The rationale of the approach is that both PFOS and PFOA as surfactants are known to modify cell membrane properties and pre-exposure to them might alter herbicide toxicity towards the cyanobacterium. Anabaena CPB4337 was pre-exposed during 72 h to PFOS or PFOA at a concentration below their no observed effect concentration (NOEC). After pre-exposure, cells were exposed to increasing concentrations of 2,4-D Atrazine, Diuron and Paraquat and the toxicity was compared to that of non-pre-exposed ones. The data clearly showed that PFCs pre-treatment significantly altered the toxicity of the tested herbicides. However the effects resulting from PFOA and PFOS pre-exposure were not homogeneous for all the herbicides. In general PFOA pre-exposure resulted in increased herbicide toxicity except for atrazine, while PFOS pre-exposure resulted in increased toxicity for paraquat and diuron, and reduced toxicity for atrazine with no significant effect on 2,4-D toxicity. The strongest modifying effect was found for paraquat whose toxicity doubled with PFOA pre-exposure. Further analysis of membrane properties by flow cytometry revealed that both PFOA and PFOS were able to modify membrane integrity and membrane potential of Anabaena CPB4337 at the concentrations used in the pre-exposure experiments. These results reveal relevant indirect effects of PFCs pollution with eco-toxicological implications.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,