Article ID Journal Published Year Pages File Type
4410212 Chemosphere 2012 8 Pages PDF
Abstract

The aim of this study was to conceive a reactive transport model capable of providing quantitative site-specific enrichment factors for fractionation in 13C isotopic content during sorption. As test compound the model treats vanillin, for which the 13C isotopic content at natural abundance at each of the 8 carbon positions can be measured by quantitative 13C nuclear magnetic resonance spectrometry. This technique determines the isotope ratios with a resolution better than ±1‰ (0.1%) at each carbon position. Site-specific isotope fractionations were recorded in chromatography column experiments with silica RP-18 as stationary phase. The one dimensional reactive transport model accounted for the sorption/desorption behavior of 8 individual 13C-isotopomers and one 12C-isotopomer of vanillin and reproduced satisfactorily the bulk (average over the whole compound) fractionation observed during elution. After model calibration, the enrichment factors were fitted for each carbon site where a significant fractionation was recorded. To show the interest of such a transport model for environmental studies, the model, extended to three dimensions, was exploited to simulate reactive transport in an aquifer. These results show that significant 13C isotope fractionation is expected for 4 out of 8 13C-isotopomers in vanillin, and illustrate that bulk isotope ratios measured by conventional compound specific isotope analysis and mass spectrometry would hardly document significant isotope fractionations in vanillin. It is concluded that modeling of site-specific isotope ratios in molecules is a priori feasible and may help to quantify unknown processes in the environment.

► Sorption of vanillin is studied on reversed-phase chromatographic phase (RP-18). ► We measured position-specific isotope ratios in vanillin using 13C NMR. ► A model is used for obtaining position-specific carbon isotope shifts. ► Mechanisms of retention of vanillin on RP-18 are discussed. ► The model is used to simulate isotope effects for sorption on natural geosorbents.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,