Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4411125 | Chemosphere | 2010 | 8 Pages |
Nitrification is often negatively affected by heavy metal pollution in soils, this limiting land revegetation. Thus, the potential use of pig slurry as a nitrogen-rich organic amendment in different heavy metal contaminated soils has been evaluated; this also being a way of recycling this waste. In order to identify the factors affecting nitrification processes in heavy metal polluted soils (soil pH, heavy metal solubility and the N source), incubation experiments were run using two polluted soils with different pH values (5.0 and 7.1) and a non-contaminated soil (pH 8.2). Ammonium was added as pig slurry or as ammonium sulphate for comparison (both added at 150 mg NH4+-N kg−1 of soil). Pig slurry provoked higher nitrification rates and N-immobilisation than ammonium sulphate, especially in the neutral-polluted soil, reflecting an improvement of the microbial activity in the soil. The microbial immobilisation of N led to an inverse relationship between the amount of N added and nitrate conversion in the neutral-polluted soil and in the non-contaminated soil amended with different pig slurry dosages (75, 150 and 225 mg NH4+-N kg−1 of soil). Low rates of nitrification and N-immobilisation were found in the acidic soil. Pig slurry addition to metal polluted soils enhanced soil nitrification, especially when metals were in low-solubility forms.