Article ID Journal Published Year Pages File Type
4412035 Chemosphere 2010 10 Pages PDF
Abstract

The erbium (Er)–chitosan–fluorine (F) modified PbO2 electrode was prepared by electrodeposition method, and its use for adsorption and electrochemical degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution was compared with F–PbO2 and Er–F–PbO2 electrodes in a batch experiment. The electrodes were characterized by scanning electron microscopy, X-ray diffraction and cyclic voltammetry. Degradation of 2,4-DCP depending on Er and chitosan contents was discussed. The results showed that Er2O3 and chitosan were scattered between the prevailing crystal structure of β-PbO2 and thus decreased the internal stress of PbO2 film. Prior to each electrolysis, the modified PbO2 anode was first pre-saturated with 2,4-DCP solution for 360 min to preclude the 2,4-DCP decrease due to adsorption. Among the electrodes examined in our study, the highest adsorption and electrochemical degradation for 2,4-DCP and TOC removals that are due to oxidation and adsorption of the organic products onto the chitosan was observed on Er–chitosan–F–PbO2 electrode. At an applied current density of 5 mA cm−2, the removal percentages of 2,4-DCP and TOC (solution volume: 180 mL, initial 2,4-DCP concentration: 90 mg L−1) were 95% after 120 min and 53% after 360 min, respectively. At Er amount of 10 mM in the precursor coating solution, the degradation and mineralization removal for 2,4-DCP on the Er–F–PbO2 electrode reached a maximum. At chitosan amount of 5 g L−1, the highest TOC removal on the Er–chitosan–F–PbO2 electrode was observed. Intermediates mainly including aliphatic carboxylic acids were examined and a possible degradation pathway for 2,4-DCP in aqueous solution involving dechlorination and hydroxylation reactions was proposed.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , ,