Article ID Journal Published Year Pages File Type
4413482 Chemosphere 2009 8 Pages PDF
Abstract

Atrazine (2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine) is a widely used herbicide which is considered a persistent groundwater contaminant. Its selective transformation mediated by cobalt or nickel porphyrins was studied in aqueous solutions at room temperature and ambient pressure. Several metalloporphyrins were examined as catalysts for the reaction and all yielded the same reaction, transforming atrazine solely to the seldomly reported form 2,4-bis(ethylamine)-6-methyl-s-triazine. The reaction involves dechlorination and migration of a methyl group to yield a symmetric product. Nickel 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) was activated by nanosized zero-valent iron (nZVI) while cobalt porphyrins (TMPyP, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine-(TP(OH)P) and 4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrakis (benzenesulfonic acid)-(TBSP)) were activated by titanium(III) citrate as the electron donor. The effect of pH on atrazine transformation was demonstrated for the catalytic system of TP(OH)P–Co/Ti(III) citrate. Finally, a comparison of the reactivities of cobalt TMPyP and TP(OH)P was given and the differences discussed.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,