Article ID Journal Published Year Pages File Type
4413676 Chemosphere 2008 8 Pages PDF
Abstract

Consequences of orthophosphate addition for corrosion control in water distribution pipes with respect to microbial growth were investigated using batch and dynamic tests. Batch tests showed that the release of copper in either low or high organic carbon content water was decreased by 69% and 56% with addition 206 μg PO4–P, respectively. Dosing of orthophosphate against corrosion did not increase microbial growth potential in the water and in the biofilm in both corroded and uncorroded systems receiving tap water with a low content of organic carbon and of biodegradable organic fraction. However, in tap water having a high concentration of organic carbon from acetate addition, orthophosphate addition promoted the growth of bacteria, allowed more bacteria to assemble on corroded and uncorroded surfaces, and increased the consumption of organic carbon. Orthophosphate consumption did not exceed 1% of the amount of easily biodegradable organic carbon required for microbial growth, and the orthophosphate demand for corrosion control greatly exceeded the nutritional requirement of microbial growth. The results of the dynamic tests demonstrated that there was a significant effect of interaction between biodegradable organic carbon and orthophosphate on biofilm growth, whereby the effect of orthophosphate flux on microbial growth was dependent on the levels of biodegradable organic carbon. Controlling an easily biodegradable organic carbon would be therefore necessary to minimize the microbial growth potential induced by orthophosphate-based anticorrosion treatment.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,