Article ID Journal Published Year Pages File Type
4420705 Ecotoxicology and Environmental Safety 2012 8 Pages PDF
Abstract

Agricultural landscapes, including paddies, play an important role in maintaining biodiversity, but this biodiversity has been under the threat of toxic agro-chemicals. Our knowledge about how aquatic communities react to, and recover from, pesticides, particularly in relation to their residues, is deficient, despite the importance of such information for realistic environmental impact assessment of pesticides. The cumulative ecological impacts on aquatic paddy communities and their recovery processes after two successive annual applications of two systemic insecticides, imidacloprid and fipronil, were monitored between mid-May and mid-September each year. The abundance of benthic organisms during both years was significantly lower in both insecticide-treated fields than in the controls. Large-impacts of fipronil on aquatic arthropods were found after the two years. Growth of medaka fish, both adults and their juveniles, was affected by the application of the two insecticides. A Principal Response Curve analysis (PRC) showed the escalation and prolongation of changes in aquatic community composition by the successive annual treatments of each insecticide over two years. Residues of fipronil in soil, which are more persistent than those of imidacloprid, had a high level of impact on aquatic communities over time. For some taxonomic groups, particularly for water surface-dwelling and water-borne arthropods, the second annual treatment had far greater impacts than the initial treatment, indicating that impacts of these insecticides under normal use patterns cannot be accurately assessed during short-term monitoring studies, i.e., lasting less than one year. It is concluded that realistic prediction and assessment of pesticide effects at the community level should also include the long-term ecological risks of their residues whenever these persist in paddies over a year.

► Ecological impacts of insecticides on aquatic communities were monitored. ► Long-term community changes by repeated insecticide applications were found. ► Relatively-large impacts of fipronil to communities were found than imidacloprid.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,