Article ID Journal Published Year Pages File Type
4422091 Ecotoxicology and Environmental Safety 2008 6 Pages PDF
Abstract

Estuarine sediment contamination is a growing significant ecological issue in New Zealand. Methods of assessing toxicity and ecological impacts in a cost effective way are currently limited. Further to that is a need to develop bioassays that generate data quickly and cost effectively and have ecological relevance to the wider community. A chronic full life-cycle bioassay to assess the toxicity of New Zealand estuarine sediments using the marine harpacticoid copepod Robertsonia propinqua has been investigated. Sediment samples were collected from the Bay of Plenty region and included two polluted and one reference site. Sources of pollutants in the contaminated field sites originated from a variety of sources and generally include nutrients, pesticides and herbicides and the pollutants zinc, copper, lead and polycyclic aromatic hydrocarbons (PAHs). Conversely, the reference site was exposed to low levels of contaminants due to the relatively undeveloped catchment. Adult male and female copepods were exposed to field collected sediments for 24 days under flow-through conditions at 21 °C and 12 h L:D cycles. Five endpoints were recorded: male and female survival, fecundity (number of gravid females per replicate at the end of the test), clutch size per female, number of eggs per sample and juvenile survival (number of nauplii and copepodites per replicate at the end of the test). Adult mortality was observed in all sediment samples but the number of males, gravid females, clutch size per female and number of eggs produced were not affected by either the contaminated or reference sediment samples. However, the contaminated sediments did reduce reproductive output (i.e. nauplii and copepodite production). Therefore, we conclude that reproductive endpoints provide a good measure of sediment-associated contaminant effects compared with adult R. propinqua survivorship. It may be that a change in focus from chemical thresholds without ecological relevance or lethal dose threshold methods, to more subtle but ecologically significant elements of faunal life, such as reproductive success, are a more sensitive and a long term ecologically informative method.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,