Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4424258 | Environmental Pollution | 2016 | 10 Pages |
•Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ETB and ETA receptors in rats.•PM2.5 increases mRNA and protein expressions of endothelin ETB and ETA receptors in bronchi.•The upregulation of ETB receptor is associated with MEK1/2 and p38 pathways.•The upregulation of ETA receptor is involved in JNK and p38 pathways.•The research provides novel understanding for PM2.5-associated respiratory diseases.
Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ETA and ETB receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ETA and ETB receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ETA and ETB receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ETB receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ETA receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ETB receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ETA receptor is involved in JNK and p38 pathways.