Article ID Journal Published Year Pages File Type
4424463 Environmental Pollution 2013 4 Pages PDF
Abstract

Natural gas is the largest source of anthropogenic emissions of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks across all 785 road miles in the city of Boston using a cavity-ring-down mobile CH4 analyzer. We identified 3356 CH4 leaks with concentrations exceeding up to 15 times the global background level. Separately, we measured δ13CH4 isotopic signatures from a subset of these leaks. The δ13CH4 signatures (mean = −42.8‰ ± 1.3‰ s.e.; n = 32) strongly indicate a fossil fuel source rather than a biogenic source for most of the leaks; natural gas sampled across the city had average δ13CH4 values of −36.8‰ (±0.7‰ s.e., n = 10), whereas CH4 collected from landfill sites, wetlands, and sewer systems had δ13CH4 signatures ∼20‰ lighter (μ = −57.8‰, ±1.6‰ s.e., n = 8). Repairing leaky natural gas distribution systems will reduce greenhouse gas emissions, increase consumer health and safety, and save money.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► We mapped 3356 methane leaks in Boston. ► Methane leaks in Boston carry an isotopic signature of pipeline natural gas. ► Replacing failing gas pipelines will provide safety, environmental, and economic benefits.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , , , ,