Article ID Journal Published Year Pages File Type
44246 Applied Catalysis A: General 2006 10 Pages PDF
Abstract

NiMoO4 silica-supported samples (6.5% w/w) were prepared by coprecipitation technique. In order to study the influence of the surface area of the support material, silicas with different surface areas have been used: Durosil (60 m2/g) and Sipernat 22 (190 m2/g) from Degussa and silica prepared in the laboratory (590 m2/g). Nanosized grains of β-NiMoO4 phase were obtained for all the prepared samples. The crystallinity of the active phase (mixed oxide) depends on the nature of the support material. The laboratory-made silica allowed reaching the highest degree of nanocrystallinity (observed by TEM) for the active phase. Results from TPR and ITR show that the sample reducibility depends on the size and crystallinity of the dispersed active phase. All the prepared samples were more reducible than the unsupported NiMoO4 sample due to the presence of β-phase instead α-NiMoO4 phase. In the tested conditions the sample prepared using the silica with the highest surface area displays the highest i-butane conversion, the highest i-butene selectivity and the lowest selectivity towards deep oxidation products.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,