Article ID Journal Published Year Pages File Type
4424979 Environmental Pollution 2012 7 Pages PDF
Abstract

Adsorption of mercury (Hg) on lignin was studied at a range of pH values using a combination of batch adsorption experiments, a surface complexation model (SCM) and synchrotron X-ray absorption spectroscopy (XAS). Surface complexation modeling indicates that three types of acid sites on lignin surfaces, namely aliphatic carboxylic-, aromatic carboxylic- and phenolic-type surface groups, contributed to Hg(II) adsorption. The bond distance and coordination number of Hg(II) adsorption samples at pH 3.0, 4.0 and 5.5 were obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. The results of SCM and XAS combined reveal that the predominant adsorption species of Hg(II) on lignin changes from HgCl20 to monodentate complex –C–O–HgCl and then bidentate complex –C–O–Hg–O–C– with increasing pH value from 2.0 to 6.0. The good agreement between SCM and XAS results provides new insight into understanding the mechanisms of Hg(II) adsorption on lignin.

► Lignin exhibits a high Hg(II) adsorption capability. ► Adsorption of Hg(II) on lignin is strongly pH-dependent. ► HgCl20, –C–O–HgCl and –C–O–Hg–O–C– are the main adsorption species of Hg(II).

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,