Article ID Journal Published Year Pages File Type
4425705 Environmental Pollution 2009 10 Pages PDF
Abstract

The impact of UV-B radiation on 10 genotypically different barley and tomato cultivars was tested in a predictive study to screen for potentially UV-tolerant accessions and to analyze underlying mechanisms for UV-B sensitivity. Plant response was analyzed by measuring thermoluminescence, fluorescence, gas exchange and antioxidant status. Generally, barley cultivars proved to be much more sensitive against UV-B radiation than tomato cultivars. Statistical cluster analysis could resolve two barley groups with distinct differences in reaction patterns. The UV-B sensitive group showed a stronger loss in PSII photochemistry and a lower gas-exchange performance and regulation after UV-B radiation compared to the more tolerant group. The results indicate that photosynthetic light and dark reactions have to play optimally in concert to render plants more tolerant against UV-B radiation. Hence, measuring thermoluminescence/fluorescence and gas exchange in parallel will have much higher potential in identifying tolerant cultivars and will help to understand the underlying mechanisms.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , , , ,