Article ID Journal Published Year Pages File Type
4427887 Environmental Pollution 2006 4 Pages PDF
Abstract
Nitrite (NO2−), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO2−) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO2− enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO2− (50.2 ± 6.74 pmol resorufin min−1 g−1 liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO2−, from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,