Article ID Journal Published Year Pages File Type
4431145 Science of The Total Environment 2010 12 Pages PDF
Abstract

The chemical and biological processes underlying in situ bioremediation of uranium-contaminated groundwater have been studied in the laboratory and in the field. This article focuses on the long-term stability of uraninite (UO2) in the underground. A large tailings pond, ‘Dänkritz 1’ in Germany, was selected for this investigation. A single-pass flow-through experiment was run in a 100-liter column: bioremediation for 1 year followed by infiltration of tap water (2.5 years) saturated with oxygen, sufficient to oxidize the precipitated uraninite in two months. Instead, only 1 wt.% uraninite was released over 2.4 years at concentrations typically less than 20 μg/L. Uraninite was protected against oxidation by the mineral mackinawite (FeS0.9), a considerable amount of which had formed, together with uraninite. A confined field test was conducted adjacent to the tailings pond, which after bio-stimulation showed similarly encouraging results as in the laboratory. Taking Dänkritz 1 as an example we show that in situ bioremediation can be a viable option for long-term site remediation, if the process is designed based on sufficient laboratory and field data. The boundary conditions for the site in Germany are discussed.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , ,