Article ID Journal Published Year Pages File Type
4432075 Science of The Total Environment 2010 10 Pages PDF
Abstract

Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO2) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r2 = 0.49) between Hg and CO2 emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks.We induced changes in CO2 respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N2/O2 (80% and 20%, respectively) to pure N2. Unexpectedly, Hg emissions almost quadrupled after O2 deprivation while oxidative mineralization (i.e., CO2 emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg2+ by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg2+ reduction, is related to O2 availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O2 levels and possibly low soil redox potentials lead to increased Hg volatilization from soils.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,